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Abstract
We propose a new theoretical interpretation of the electron energy loss
spectroscopy results of Pichler et al on bulk carbon nanotube samples. The
origin of the nondispersive modes found experimentally has been controversial,
and at least three different interpretations have been offered in the literature.
From our theoretical results of the loss functions for individual carbon nanotubes
based on a tight-binding model, we find that the nondispersive modes could
be due to collective electronic modes in chiral carbon nanotubes, while the
observed dispersive mode should be due to collective electronic modes in
armchair and zigzag carbon nanotubes.

Carbon nanotubes have been centre-stage in physics research for over a decade, for good
reasons. In addition to the long list of practical applications possible, the fundamental physical
properties of carbon nanotubes have been extremely interesting and challenging. Notably,
metallic carbon nanotubes have been found to exhibit Luttinger liquid behaviour [1], and
whether a carbon nanotube is metallic or semiconducting is dependent on the chirality of the
tubes. It is well known that, in a Luttinger liquid, single-particle excitations are suppressed;
thus the collective electronic modes or plasmons play an extremely important role for carbon
nanotubes.

Momentum-dependentelectron energy loss spectroscopy (EELS) as carried out by Pichler
et al [2–4] offers an excellent tool for studying plasmons in carbon nanotubes. Their experiment
was performed first on bulk samples of single-wall carbon nanotubes [2, 3] and later on
magnetically aligned bundles of single-wall carbon nanotubes [4]. In the low energy range of
the spectrum, the experimental findings are: (i) a dispersive mode as a function of momentum
transfer in the 5–8 eV range; (ii) several nondispersive modes at lower energies. The dispersive
mode was attributed to the π plasmon without controversy. As for the nondispersive modes,
no theory predicted their existence; Pichler et al first interpreted them in terms of interband
excitations between localized states polarized perpendicular to the nanotube axis [2]. Later
this interpretation was modified in the light of the new results coming from optical absorption
measurements [5, 4, 9, 6–8].
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The bulk sample used in the experiment of Pichler et al had a mean diameter of 1.4 nm,
and nondispersive modes were observed at 0.85, 1.45, 2.0, and 2.55 eV. Optical absorption
measurements by Jost et al [5] on carbon nanotube-containing soot revealed excitations at
0.72, 1.3, and 1.9 eV for the mean diameter of 1.29 nm. Since the gap between van Hove
singularities in the electronic density of states is known to be inversely proportional to the
diameter, single-particle excitation energies should be larger in smaller diameter carbon
nanotubes. However, the observed excitations in the experiment of Jost et al appear to be
at smaller energies compared to those observed in the experiment of Pichler et al. To reconcile
the two experiments, one has to assume that the nondispersive modes observed by Pichler
et al are collective rather than single-particle modes. Additionally, recent experimental and
theoretical results [6] on polarized optical absorption of aligned single-wall carbon nanotubes
1.35 nm in average diameter show that when the light is polarized parallel to the tube
axis, the absorption spectra have several peaks below 3 eV, but when the light is polarized
perpendicular to the tube axis, the absorption spectra become essentially featureless. Similar
results were obtained earlier for tubes of much smaller diameter (0.4 nm) [7, 8]. These results
suggest that the nondispersive modes are not due to excitations polarized perpendicular to the
tube axis.

A recent paper by Liu et al [9] comparing optical absorption with EELS suggests that
the nondispersive modes in the EELS are due to collective excitations of the optically allowed
transitions. This could be a viable interpretation (barring the perpendicular polarization),
making these modes analogous to the intersubband plasmons in quantum wires [10–12].
Although this interpretation seems to be more adequate, still no explanation was given for
the nondispersive character. More theoretical work is necessary in order to further understand
the experimental results.

The only way to explain the nondispersive character of the collective modes observed
in the experiment theoretically is by studying their dispersion relations. Although many
calculations are available in the literature for the momentum-dependent dielectric function
and loss function of single- and multi-walled carbon nanotubes and bundles of single-walled
carbon nanotubes [18, 17, 14, 15, 13, 16],only a few of them presented and discussed dispersion
relations for the excitation modes [17, 14, 15, 13], and only one [17] tried to explain the origin
of the nondispersive peaks observed by Pichler et al.

Three years after the initial experiment, theorist Bose [17] gave his explanation for the
nondispersive character of the low energy peaks, noting that according to EELS theory [19],
the experiment should measure the collective electronic modes and their dispersion relations.
On the basis of a plasmon calculation using a model of a free electron gas confined to a
cylindrical surface, he suggested an alternative interpretation of the nondispersive modes in
terms of optical plasmons carrying nonzero angular momenta. However, a close inspection of
the calculated plasmon dispersion curves presented in an earlier paper by Longe and Bose [18]
reveals difficulties with this interpretation. In figure 1 of that paper, one can see that the
acoustic plasmon which carries zero angular momentum is the lowest in energy and most
dispersive. Plasmons with nonzero angular momenta are all optical, and as the angular
momentum increases, the energy increases and the amount of dispersion decreases. While
Bose did not clarify whether the dispersive mode corresponds to a zero-angular-momentum
mode or not, difficulties arise regardless of how the dispersive mode is assigned: if it is assigned
as a zero-angular-momentum mode, the optical plasmons should have higher energies than
the dispersive mode, not at lower energies as experimentally observed; if it is assigned as a
nonzero-angular-momentum mode, for the energies to be in the correct order, it must have
larger angular momentum than the nondispersive modes, but larger angular momentum should
correspond to less dispersion!
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Clearly, over six years after the initial discovery of the nondispersive modes in EELS,
the origin of the modes remains a puzzle. In this letter, we present our theoretical results
on the loss functions of individual single-wall carbon nanotubes, and shed some light on the
origin of the nondispersive modes. In particular, we propose that the nondispersive modes
are inter(sub)band plasmons from chiral carbon nanotubes which have small Brillouin zones.
These collective modes generally are not polarized perpendicularly to the tube axis. Further
experiments are suggested for decisively determining the validity of this interpretation.

It is well known that the electronic properties of carbon nanotubes are dependent on
the chirality. Whether a (n, m) carbon nanotube is metallic or not depends on whether the
difference n − m is divisible by 3. Such important details are not captured by a free electron
gas type of model. On the other hand, a tight-binding model [20] is known to produce the
electronic band structures of carbon nanotubes very well as long as the radius is not too small.
We use such a tight-binding model for π band electrons to study the collective electronic
excitations of individual carbon nanotubes—similar to the approach of Lin et al [14, 15].
The theoretical framework is the well used random phase approximation (RPA) theory, which
has been applied successfully to many systems including quantum wires [10–12]. While this
theory is usually used for Fermi liquids, Li et al [21] have shown that for a quantum wire
with only one occupied subband, this theory gives the correct result for a Luttinger liquid.
More recently, Que [22] has applied this theory to metallic carbon nanotubes, and obtained the
same results as other established methods for studying Luttinger liquids. On the basis of these
findings, it was concluded that the RPA theory is suitable for studying plasmons in both Fermi
liquids and Luttinger liquids. Our numerical results for metallic tubes are consistent with the
analytical results on Luttinger liquids [22].

Due to the cylindrical symmetry of the individual nanotubes, the electronic excitations
have a well defined transfer momentum q0 in the first Brillouin zone, angular momentum L,
and energy ω; these dependences will be transferred to the dielectric matrix

εG,G ′(q0, L, ω) = δG,G ′ − VR(q0 + G, L)χG,G ′(q0, L, ω) (1)

where VR(q, L) = e2

ε0
IL (|q|R)KL(|q|R) is the 1D Fourier transform of the Coulomb

interaction, I and K are the modified Bessel functions, R is the nanotube radius,e is the electron
charge, ε0 is the background dielectric constant, χG,G ′(q0, L, ω) is the response function, and
G, G ′ are lattice vectors in momentum space. The response function is calculated in the
RPA within the tight-binding model, like in the Lin et al [14, 15] approach, but including
the Umklapp terms, and the details will be presented elsewhere. The macroscopic dielectric
function is given by [23]

εM(q0, L, ω) = 1

ε−1
0,0(q0, L, ω)

. (2)

Figure 1 shows the loss functions of the (10, 10) armchair carbon nanotube (radius
R = 6.88 Å), the (18, 0) zigzag carbon nanotube (R = 7.15 Å), and the (16, 3) chiral
carbon nanotube (R = 7.02 Å). The angular momentum is a good quantum number and
only the zero-angular-momentum modes are shown. Each loss function has several peaks but
becomes featureless beyond 12 eV (σ band electrons are not included in the model).

Since L is a good quantum number, we have calculated the dispersions of collective
electronic modes for different L values, and in figures 2 and 3 we show the L = 0 and 1 cases
respectively. The dispersion curves terminate at the Brillouin zone edge of the corresponding
carbon nanotube. In figure 2 we see that the (16, 3) tube has only optical modes, while the
(10, 10) and (18, 0) tubes each have an acoustic mode. This is because the (16, 3) tube is
semiconducting while the (10, 10) and (18, 0) tubes are metallic. Assuming a carbon–carbon
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Figure 1. Loss function Im(−1/εM(q0, L , ω)) computed for q0 = 0.04 Å−1 and zero angular
momentum (L = 0) for tubes with different chiralities but similar radii: about 7 Å. The (10, 10)
armchair tube and the (18, 0) zigzag tube are both metallic. The (16, 3) chiral tube is semiconducting.
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Figure 2. Dispersion curves for the collective electronic modes with angular momentum index
L = 0, for the same three carbon nanotubes as in figure 1. The solid diamonds are experimental
results on the dispersive mode from Pichler et al. The Brillouin zone edges for the (10, 10), (18, 0),
and (16, 3) carbon nanotubes are at q0 = 1.26, 0.73, and 0.041 Å−1, respectively.

bond length of aC−C = 1.44 Å, it can be shown that all armchair carbon nanotubes have the
same Brillouin zone edge of π/T = 1.26 Å−1 (T is the length of the translational vector [20]),
and all zigzag carbon nanotubes have the same Brillouin zone edge of π/T = 0.73 Å−1,
but different chiral carbon nanotubes have different Brillouin zone sizes. Those (n, m) chiral
nanotubes for which the greatest common divisor among 2n + m and 2m + n is 1 have the
smallest Brillouin zones, with π/T = π/(3aC−C

√
n2 + m2 + nm). For the (16, 3) chiral
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Figure 3. Dispersion curves for the collective electronic modes with angular momentum index
L = 1, for the same three carbon nanotubes as in figure 1.

carbon nanotube, its Brillouin zone edge is at π/T = 0.041 Å−1. Some of the curves for the
(10, 10) and (18, 0) carbon nanotubes terminate before reaching the Brillouin zone edge due to
vanishingly small peak amplitudes. Clearly, the (10, 10) armchair tube and the (18, 0) zigzag
tube both have dispersive modes for all the L values of the computation, and we find this to
be generally true for armchair and zigzag tubes. On the other hand, the collective electronic
modes of the (16, 3) chiral tube have little dispersion, and this is also the case for many other
chiral tubes. The reason for the lack of dispersion is the much smaller Brillouin zone.

If we compare the results in figures 2 and 3 with the results of Longe and Bose [18], we
see that a major difference is that in the latter, there is only one branch of collective modes for
each angular momentum index L, while in our results, we find many branches for each angular
momentum index L, such as in figure 3. This is due to the band structures of carbon nanotubes
with many occupied and empty (sub)bands. We find that when L is increased, excitation
energies increase, and dispersion is reduced. Since the experimentally found dispersionless
modes are at lower energies than the dispersive L = 0 π plasmon, one can rule out the
possibility that they are L > 0 modes. We note that since the experiment of Pichler et al
was performed on bulk samples (7 Å mean radius), the measured spectra contain contributions
from many carbon nanotubes of different chirality. The nondispersive modes could be due to
chiral carbon nanotubes, and the dispersive mode should be due to armchair and zigzag carbon
nanotubes. Experimentally, only one dispersive mode was found, but since the peak of the
dispersive mode was a couple of eV broad, it is possible that several modes of large amplitude
contributed to the broad peak.

Since intertube coupling shifts the energies of the collective electronic modes higher [13],
it is not possible to match the calculated energies in this work for individual carbon nanotubes
to experimental results on bulk samples where intertube coupling is present. To allow an exact
comparison between theory and experiment, it is desirable to obtain momentum-dependent
EELS for individual carbon nanotubes, and such experiments should determine decisively
the validity of the interpretation offered in this letter. We note that Reed and Sarikaya [24]
have already done EELS work on individual carbon nanotubes (but not momentum-dependent
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measurements) and noticed variations in results from different tubes. If our prediction is
confirmed experimentally, eventually EELS could become a potential tool for identifying the
chirality of individual carbon nanotubes.
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